New minimally-invasive breast surgery brings raft of benefits

Perth Plastic Surgeon
Mr Mark Lee hopes to make the decision to have a preventative double mastectomy less confronting for women with a new minimally-invasive breast reconstruction technique being pioneered at St John of God Subiaco Hospital.

Mr Lee presented his findings from the first 25 surgical cases just weeks before a flurry of world media headlines when actor Angelina Jolie made the announcement that she had undergone a preventative double mastectomy and reconstruction.

In May this year, his presentation at the 17th World Congress of the International Confederation for Plastic, Reconstructive and Aesthetic Surgery in Chile achieved the recognition of plastic surgeons worldwide.

“The scarless latissimus dorsi breast reconstructive procedure is a bilateral procedure and a modification of an existing breast reconstructive surgical technique,” Mr Lee explained.

“It allows the patient’s back muscle flap to effectively be harvested without scars on the patient’s back. In existing surgical techniques, multiple incisions are often made via the breast and back to access muscle tissue from the patient’s latissimus dorsi muscle.”

Mr Lee harvests the muscle tissue without dividing the blood supply, through the same surgical incision made via the breast, thereby limiting surgical scarring.

As a minimally invasive procedure, this new technique has a number of benefits to patients including reduced operating time, and patients generally have less scarring, quicker recovery, fewer complications and an overall reduced hospital length of stay.

Mr Lee said the procedure was ideal for young women who are genetically predisposed to developing breast cancer and considering bilateral preventative surgery.

“Young women who choose to have preventative mastectomies now have a surgical option that is less invasive and potentially less emotionally confronting for them,” he said.

“Preventative mastectomy in high risk patients reconstructed with this technique can have aesthetically better results by reducing post-operative scarring, but also significantly reduces their risk of developing breast cancer throughout life.”

For more information, visit www.jog.org.au/subiaco

ABSTRACT

Scarless Latissimus Dorsi harvest using standard breast surgery instruments and no patient repositioning provides effective lower pole prosthetic coverage in breast reconstruction.

By Mark Andrew Lee FRACS and Kirsten Mitoff, MBBS

Background: Many standard breast reconstruction techniques evolved in an era when more skin replacement was required and tools such as lipofilling were not available to finesse a result. The use of biological acellular matrices has grown with the advantage of short operating time and no donor site scar. These devices have high complication rates. A latissimus dorsi muscle pedicle can be easily harvested via an anterior approach using standard breast instruments without repositioning the patient. This can effectively cover the lower pole of a breast prosthesis. Vascularised cover avoids many of the risks of acellular prosthetic cover.

Methods: The authors retrospectively reviewed 20 consecutive patients with 26 scarless latissimus dorsi flap reconstructions. The reconstruction and objective aesthetic outcomes were evaluated by clinical and photographic assessment. Patient satisfaction was evaluated using the standardized BREAST-Q assessment.

Results: All muscle flaps were survived, operative times and pain scores were significantly lower than standard latissimus harvest from the back. There were no implant losses or infection. Clinical assessment and patient satisfaction was equivalent to standard technique. Two cases of native breast skin necrosis were able to be treated conservatively with good results.

Conclusions: The scarless latissimus dorsi muscle flap and breast prosthesis is a safe, effective option for breast reconstruction. It has advantages over traditional techniques in terms of scarring, pain control and reduced operative time. We feel it is also a safer and cheaper alternative to the use of acellular biological matrices.